$12^{1}_{250}$ - Minimal pinning sets
Pinning sets for 12^1_250
Minimal pinning semi-lattice
(y-axis: cardinality)
Pinning semi lattice for 12^1_250
Pinning data
Pinning number of this loop: 4
Total number of pinning sets: 256
of which optimal: 1
of which minimal: 1
The mean region-degree (mean-degree) of a pinning set is
on average over all pinning sets: 2.96564
on average over minimal pinning sets: 2.0
on average over optimal pinning sets: 2.0
Refined data for the minimal pinning sets
Pin label
Pin color
Regions
Cardinality
Degree sequence
Mean-degree
A (optimal)
•
{1, 2, 4, 9}
4
[2, 2, 2, 2]
2.00
Data for pinning sets in each cardinal
Cardinality
Optimal pinning sets
Minimal suboptimal pinning sets
Nonminimal pinning sets
Averaged mean-degree
4
1
0
0
2.0
5
0
0
8
2.4
6
0
0
28
2.67
7
0
0
56
2.86
8
0
0
70
3.0
9
0
0
56
3.11
10
0
0
28
3.2
11
0
0
8
3.27
12
0
0
1
3.33
Total
1
0
255
Other information about this loop
Properties
Region degree sequence: [2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5]
Minimal region degree: 2
Is multisimple: No
Combinatorial encoding data
Plantri embedding: [[1,2,3,4],[0,5,6,6],[0,6,3,3],[0,2,2,7],[0,8,8,5],[1,4,8,9],[1,9,2,1],[3,9,9,8],[4,7,5,4],[5,7,7,6]]
PD code (use to draw this loop with SnapPy): [[17,20,18,1],[9,16,10,17],[19,14,20,15],[18,14,19,13],[1,7,2,6],[8,5,9,6],[15,10,16,11],[12,3,13,4],[7,3,8,2],[4,11,5,12]]
Permutation representation (action on half-edges):
Vertex permutation $\sigma=$ (9,20,-10,-1)(5,2,-6,-3)(3,18,-4,-19)(12,7,-13,-8)(1,8,-2,-9)(10,15,-11,-16)(16,11,-17,-12)(6,13,-7,-14)(14,17,-15,-18)(19,4,-20,-5)
Edge permutation $\epsilon=$ (-1,1)(-2,2)(-3,3)(-4,4)(-5,5)(-6,6)(-7,7)(-8,8)(-9,9)(-10,10)(-11,11)(-12,12)(-13,13)(-14,14)(-15,15)(-16,16)(-17,17)(-18,18)(-19,19)(-20,20)
Face permutation $\varphi=(\sigma\epsilon)^{-1}=$ (-1,-9)(-2,5,-20,9)(-3,-19,-5)(-4,19)(-6,-14,-18,3)(-7,12,-17,14)(-8,1,-10,-16,-12)(-11,16)(-13,6,2,8)(-15,10,20,4,18)(7,13)(11,15,17)
Loop annotated with half-edges
12^1_250 annotated with half-edges